

Bioinformatics Tools in Drug Discovery: Course Outline/Curriculum and Timetable

The four corner stones of bioinformatics are 1) a knowledge of biology (more specifically, molecular biology and genetics) 2) programming 3) databases and 4) bioinformatics-specific tools. It is the fourth component of the bioinformaticians' toolkit, which is the focus of this course.

When you have completed this course, you will have learned approaches and skills that will allow you to analyze DNA and protein sequences with a wide variety of tools. More specifically, you will:

- understand the theory behind sequence alignment and searching and become adept at performing both pair wise and multiple sequence alignment
- be able to run and interpret DNA and protein BLAST with more than just the default parameters
- be capable of applying different approaches to gene prediction
- learn about selected publicly available databases and tools for 2D and 3D protein structure, function prediction and analysis
- access the genome database Ensembl through more than just the web interface

Students are expected to have a background in molecular biology or genetics and while UNIX experience is not essential, it would be useful. Students who have not used UNIX will complete an additional skills training session.

The course will be of most benefit to those who wish to move beyond web-page clicking bioinformatics to gain a better understanding of which programs to use when and why. The course will provide a strong foundation for those interested in exploring more advanced bioinformatics topics.

Course Outline/Curriculum and Timetable

Day 1

0900-1000	Lecture 1: Theory of Sequence Alignments
	<ul style="list-style-type: none">• Dot Plots• Dynamic Programming• FASTA alignment algorithm
1000-1100	Lab 1: Database Similarity Searching - an Introduction to FASTA and BLAST
1100-1200	Lecture 2: BLAST
	<ul style="list-style-type: none">• Extreme value distribution• Expect values• Algorithm

	<ul style="list-style-type: none"> • Segment pairs • BLAST vs. FASTA • Parameters • Matrixes: PAM vs. BLOSUM • BLAST programs compared • Optimizing BLAST
1200-1300	Lunch
1300-1400	Lab 2: Standalone (Local) BLAST
1400-1500	<p>Lecture 3: Gene Prediction for Identifying Novel Targets</p> <ul style="list-style-type: none"> • Markov models • Hidden Markov Models • Prokaryotic tools • Eukaryotic tools
1500-1600	Lab 3: Target Hunting with GenScan, GenomeScan, and HMMGene
1600-1700	Free lab time to complete assignments
<u>Day 2</u>	
0900-1000	<p>Lecture 4: Multiple Sequence Alignment and Molecular Evolution</p> <ul style="list-style-type: none"> • Darwin's theory as a foundation for bioinformatics • Evolution and characters • MSA overview • Tools for MSA
1000-1100	Lab 4 : Multiple Sequence Alignments
1100-1200	<p>Lecture 5: Protein Motifs and Structure Prediction</p> <ul style="list-style-type: none"> • Protein Data Bank • Structure Visualization • Viewing structures: Rasmol, CN3D • Homology modeling • VAST
1200-1300	Lunch
1300-1400	Lab 5 - Proteomics Using the ExPASy Site to Characterize Targets
1400-1500	<p>Lecture 6: Open Source Bioinformatics for High Throughput Target Identification</p> <ul style="list-style-type: none"> • BioPerl • Ensembl
1500- 1600	Lab 6 Perl for Bioinformatics
1600-1700	Free lab time to complete assignments

DAY 3: Full-Day of Lab Time